ĐKXĐ : \(x\ne0\)
Đặt \(x+\frac{1}{x}=y\Rightarrow x^2+\frac{1}{x^2}=y^2-2\)
\(\Rightarrow8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}+51\right)=0\)có dạng \(8\left(y^2-2\right)-34y+51=0\)
\(\Leftrightarrow8y^2-34y+35=0\)
\(\Leftrightarrow\left(2y-5\right)\left(4y-7\right)=0\)
\(\Leftrightarrow y\in\left\{\frac{5}{2};\frac{7}{4}\right\}\)
+) Với \(y=\frac{5}{2}\)thì \(x+\frac{1}{x}=\frac{5}{2}\Leftrightarrow2x^2-5x+2=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
+) Với \(y=\frac{7}{4}\) thì \(x+\frac{1}{x}=\frac{7}{4}\Leftrightarrow4x^2-7x+4=0\)
\(\Leftrightarrow4\left(x-\frac{7}{8}\right)^2+\frac{15}{16}=0\) ( pt vô ngiệm)
Vậy ... 2 ; 1/2