Txđ: \(x\in[3;5]\)
Áp dụng BĐT : \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)Với \(a,b\ge0\)(Chứng minh cái này dễ thôi, bạn bình phương 2 vế là ra nhé)
Ta có: \(\sqrt{5-x}+\sqrt{x-3}\le\sqrt{2(5-x+x-3)}\)\(=2\)
Mặt khác:
\(\frac{2x^2}{8x-16}=\frac{x^2}{4\left(x-2\right)}=\frac{[\left(x-2\right)+2]^2}{4\left(x-2\right)}=\frac{\left(x-2\right)^2+4\left(x-2\right)+4}{4\left(x-2\right)}=\frac{x-2}{4}+\frac{1}{x-2}+1\)
\(\ge2\sqrt{\frac{x-2}{4}.\frac{1}{x-2}}+1=2\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}5-x=x-3\\\frac{x-2}{4}=\frac{1}{x-2}\end{cases}}\)
=> \(x=4\)(Thỏa mãn Đ/K)