Ta có: \(a+b+c=\sqrt{3}-\left(2+\sqrt{3}\right)+2=0\) nên pt có 2 nghiệm:
\(x_1=1\) ; \(x_2=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)
Ta có: \(a+b+c=\sqrt{3}-\left(2+\sqrt{3}\right)+2=0\) nên pt có 2 nghiệm:
\(x_1=1\) ; \(x_2=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)
Giải Phương Trình
\(\sqrt{\left(2x+3\right)^2}=5\)
\(\sqrt{9\left(x-2\right)^2}=18\)
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
\(\sqrt{4.\left(x-3\right)^2}=8\)
\(\sqrt{5x-6}-3=0\)
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
\(\left(\sqrt{3}+2\right)x^2-\left(\sqrt{5}-\sqrt{3}\right)x-\sqrt{5}-2\)-2 =0
Giải phương trình
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
Giải phương trình
\(\left(\sqrt{3}+2\right)x^2-\left(\sqrt{5}-\sqrt{3}\right)x-\sqrt{5}-2\)-2 =0
Giải phương trình
\(\left(\sqrt{3}+2\right)x^2-\left(\sqrt{5}-\sqrt{3}\right)x-\sqrt{5}-\sqrt{2}\)\(\sqrt{2}=0\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải hệ phương trình sau:
\(\hept{\begin{cases}x^2\left(y+3\right)\left(x-2\right)-\sqrt{2x+3}=0\\4x-4\sqrt{2x+3}+x^3\sqrt{\left(y+3\right)^2}+9=0\end{cases}}\)