Đặt \(x\sqrt{1-x^2}=a\)
\(PT\Leftrightarrow\frac{1-a^2}{a^2}+\frac{5}{2a}+2=0\)
\(\Leftrightarrow2x^2+5x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=-\frac{1}{2}\end{cases}}\)
Tới đây thì đơn giản rồi bạn làm tiếp nhé
Đặt \(x\sqrt{1-x^2}=a\)
\(PT\Leftrightarrow\frac{1-a^2}{a^2}+\frac{5}{2a}+2=0\)
\(\Leftrightarrow2x^2+5x+2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=-\frac{1}{2}\end{cases}}\)
Tới đây thì đơn giản rồi bạn làm tiếp nhé
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Tìm điều kiện xác định và giải các phương trình sau
a) \(\frac{3}{x-5}.\frac{\sqrt{\left(5-x\right)^2.\left(x-1\right)}}{\sqrt{\left(x-1\right)^2}}-\frac{1}{x+1}\)
b) \(\sqrt{\frac{1+x}{2x}}:\sqrt{\frac{\left(x+1\right)^3}{8x}}-\sqrt{x^2-4x+4}=0\)
giải bất phương trình \(\frac{\left(x-2\right)^{^2}-\left(\sqrt{x-1}-1\right)^2\left(2x-1\right)}{x-\sqrt{2\left(x^2+5\right)}}< =0\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Giải phương trình \(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
giải các phương trình cô tỉ sau
1) \(\sqrt{x+1}-\sqrt{\frac{x+1}{x}}-1=0\)
2) \(\left(x^2+2\right)^2+4\left(x+1\right)^3+\sqrt{x^2+2x+5}=\left(2x-1\right)^3+2\)
3) \(\sqrt{1+\sqrt{2x-x^2}}+\sqrt{1-\sqrt{2x-x^2}}=2\left(x-1\right)^4\left(2x^2-4x+1\right)\)
giải phương trình:
\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)
Giải hệ phương trình :
\(\hept{\begin{cases}2x^2\left(4x+1\right)+2y^2\left(2y+1\right)=y+32\\x^2+y^2-x+y=\frac{1}{2}\end{cases}}\)
Giải phương trình :
\(\frac{\sqrt{x^2-x+2}}{1+\sqrt{-x^2+x+2}}-\frac{\sqrt{x^2+x}}{1+\sqrt{-x^2-x+4}}=x^2-1\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)