\(\frac{x-a}{a+b}+\frac{x-b}{a-b}=\frac{2ab}{b^2-a^2}.\)
\(\Rightarrow\frac{ax-bx-a^2+ab+ax+bx-ba-b^2}{\left(a+b\right).\left(a-b\right)}=\frac{-2ab}{\left(a+b\right).\left(a-b\right)}\)
\(\Rightarrow2ax=a^2-2ab+b^2\)
=> 2ax = (a-b)2
nếu a=0; \(b\ne0\)
=> \(x\in\varnothing\)
nếu a=0, b=0
=> \(x\in R\)
nếu \(a\ne0;b=0\)
=> x = a/2