Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Song Minguk

Giải phương trình:

a)  \(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)

b)  \(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)

Hà Nam Phan Đình
8 tháng 11 2017 lúc 15:39

a) ĐKXĐ: \(x\ne-1\)

Phương trình tương đương: \(\dfrac{5x-x^2}{x+1}\left(x+\dfrac{5-x}{x+1}\right)=6\)

Đặt \(x+\dfrac{5-x}{x+1}=t\) \(\Rightarrow t=\dfrac{5-x+x^2+x}{x+1}=\dfrac{x^2+5}{x+1}\)

\(\Rightarrow-t=\dfrac{-x^2-5}{x+1}=\dfrac{5x-x^2-5x-5}{x+1}=\dfrac{5x-x^2-5\left(x+1\right)}{x+1}\)

\(=\dfrac{5x-x^2}{x+1}-5\)

\(\Rightarrow-t=\dfrac{5x-x^2}{x+1}-5\Rightarrow5-t=\dfrac{5x-x^2}{x+1}\)

Vậy Phương trình trở thành: \(\left(5-t\right)t=6\Leftrightarrow t^2-5t+6=0\)

\(\Leftrightarrow\left(t-2\right)\left(t-3\right)=0\)

Khi t=2 thì \(x+\dfrac{5-x}{x+1}=2\Leftrightarrow x^2-2x+3=0\) (vô nghiệm)

Khi t=3 thì \(x+\dfrac{5-x}{x+1}=3\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\)

Bùi Thị Vân
8 tháng 11 2017 lúc 17:16

a) \(\sqrt{\left(x-2013\right)^{10}}+\sqrt{\left(x-2014\right)^{14}}=1\)
\(\Leftrightarrow\left|x-2013\right|^5+\left|x-2014\right|^7=1\)
Dễ dàng thấy \(x=2013\) hoặc \(x=2014\) là các nghiệm của phương trình.
Nếu \(x>2014\) khi đó \(\left|x-2013\right|^5>\left|2014-2013\right|^5>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\) .
Vì vậy mọi \(x>2014\) đều không là nghiệm của phương trình.
Nếu \(x< 2013\) khi đó \(\left|x-2014\right|^7>\left|2013-2014\right|^7>1\) nên:
\(\left|x-2013\right|^5+\left|x-2014\right|^7>1\).
Vì vậy mọi \(x< 2013\) đều không là nghiệm của phương trình.
Nếu \(2013< x< 2014\) khi đó:
\(\left|x-2013\right|< 1,\left|x-2014\right|< 1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< \left|x-2013\right|+\left|x-2014\right|\).
Ta xét tập giá trị của \(\left|x-2013\right|+\left|x-2014\right|\) với \(2013< x< 2014\).
Khi đó \(x-2013>0,x-2014< 0\).
Vì vậy \(\left|x-2013\right|+\left|x-2014\right|=x-2013+x-2014=1\).
Suy ra \(\left|x-2013\right|^5+\left|x-2014\right|^7< 1\).
vậy mọi x mà \(2013< x< 2014\) đều không là nghiệm của phương trình.
Kết luận phương trình có hai nghiệm là \(x=2013,x=2014\).


Các câu hỏi tương tự
Nguyễn Ngọc Tú Uyên
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Xuân Trà
Xem chi tiết
Xuân Trà
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Xuân Trà
Xem chi tiết
Cơn Gió Lạnh
Xem chi tiết
Xuân Trà
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết