Pttđ: \(x^2-x-1=2018\left(\sqrt{x^2+x+2}-\sqrt{2x^2+1}\right)\)(1)
Đặt \(\sqrt{2x^2+1}=a;\sqrt{x^2+x+2}=b\Rightarrow x^2-x-1=a^2-b^2\)
(1) <=> a2-b2=2018(b-a)
<=>(a-b)(a+b)=-2018(a-b)
<=>a=b hoặc a+b=-2018
Tự giải tiếp nha
Pttđ: \(x^2-x-1=2018\left(\sqrt{x^2+x+2}-\sqrt{2x^2+1}\right)\)(1)
Đặt \(\sqrt{2x^2+1}=a;\sqrt{x^2+x+2}=b\Rightarrow x^2-x-1=a^2-b^2\)
(1) <=> a2-b2=2018(b-a)
<=>(a-b)(a+b)=-2018(a-b)
<=>a=b hoặc a+b=-2018
Tự giải tiếp nha
giải phương trình" \(x^2+2018\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+1}\)
giải phương trình\(\sqrt{x^2-2018x+2018}+\sqrt{x^2-1009x+1009}=2x\)
Giải Phương Trình
a) \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
b)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
c)\(\text{|x-2017|^{2017}+\text{|x-2018|}^{2018}=1}\)
Cho \(x=\frac{1}{2}\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\).
Tính giá trị phương trình: \(A=\left(4x^5+4x^4-x^3+1\right)^{2018}+\left(\sqrt{4x^5+4x^4-5x^3+3}\right)^3+\left(\frac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2017}\)
tại giá trị của x.
Giải phương trình \({\sqrt{2020-x}+\sqrt{x-2018}}={x^2-4038x+4076363}\)
1.Giải hệ phương trình
\(\hept{\begin{cases}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+17y}\end{cases}}\)
2.Cho P(x) là đa thức bậc 3 có hệ số bậc cao nhất là 1 và thảo mãn:
P(2016)=2017;P(2017)=2018.Tính:-3P(2018)+P(2019)
3.Cho x,y,z\(\ge1\)thỏa mãn:\(3x^2+4y^2+5Z^2=32\)
Tìm min:x+y+z
x2+ 2018\(\sqrt{2x^2+1}=x+1+2018\sqrt{x^2+x+2}\)
Giai phuong trinh
Giải các phương trình sau :
1/\(\sqrt{x+2+4\sqrt{x-2}}=5\)
2/\(\sqrt{x+3+4\sqrt{x-1}}=2\)
3/\(\sqrt{x+\sqrt{2x-1}}=\sqrt{2}\)
4/\(\sqrt{x-2+\sqrt{2x-5}}=3\sqrt{2}\)
Giải phương trình:
\(\sqrt{1+\sqrt{2x-x^2}}+\sqrt{1-\sqrt{2x-x^2}}=2\left(x-1\right)^4\left(2x^2-4x+1\right)\)