Lời giải:
ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow x^2-4x+21-6\sqrt{2x+3}=0$
$\Leftrightarrow (x^2-6x+9)+[(2x+3)-6\sqrt{2x+3}+9]=0$
$\Leftrightarrow (x-3)^2+(\sqrt{2x+3}-3)^2=0$
Ta thấy: $(x-3)^2\geq 0; (\sqrt{2x+3}-3)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-3)^2=(\sqrt{2x+3}-3)^2=0$
$\Leftrightarrow x=3$ (tm)