Giải phương trình sau
\(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{a+b+2c-3x}{c}=\frac{54x}{a+b+c}\)
Giai PT : \(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{a+b+2c-3x}{c}=6-\frac{9x}{a+b+c}\)
giải phương trình với các tham số a,b,c
\(\frac{x-a}{b+c}+\frac{x-b}{c+a}+\frac{x-c}{a+b}=\frac{3x}{a+b+c}\)
GIẢI PT theo a,b,c:
a) a2x-ab=b2(x-1)
b) \(\frac{a\left(3x-1\right)}{5}\)-\(\frac{6x-17}{4}\)+\(\frac{3x+2}{10}\)=O
c) \(\frac{2a+b+c-3x}{a}\)+\(\frac{a+2b+c-3x}{b}\)+\(\frac{a+b+2c-3x}{c}\)=6 - \(\frac{9x}{a+b+c}\)
d)\(\frac{x-ab}{a+b}\)+\(\frac{x-bc}{b+c}\)+\(\frac{x-ca}{c+a}\)= a+b+c
Cho a,b,c là các số thực khác 0 thỏa mãn. Tính giá trị biểu thức:
\(P=\frac{a^2c}{a^2c+c^2b+b^2a}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
cho các số a,b,c,d nguyên dương và thỏa mãn:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
cm:A=abcd là số chính phương
Cho các số a, b, c, d nguyên dương đôi một khác nhau và thỏa mãn :
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
CMR A = abcd là số chính phương.
Cho số a và 3 số b, c, d khác a và thảo mãn điều kiện c + d = 2b. Giải phương trình:
\(\frac{x}{\left(a-b\right)\left(a-c\right)}-\frac{2x}{\left(a-b\right)\left(a-d\right)}+\frac{3x}{\left(a-c\right)\left(a-d\right)}=\frac{4a}{\left(a-c\right)\left(a-d\right)}\)
Cho các số a,b,c,d nguyên dương đôi một khác nhau và thỏa mãn:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
Chứng minh B=abcd là số chính phương