\(x^3-\sqrt[3]{6+\sqrt[3]{x+6}}=6\Leftrightarrow x^3-\left(\sqrt[3]{6+\sqrt[3]{x+6}}-2\right)=8\)
\(\Leftrightarrow\left(x^3-8\right)-\frac{\sqrt[3]{x+6}-2}{\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\frac{x-2}{\left(\sqrt[3]{\left(6+\sqrt[3]{x+6}\right)^2}+2\sqrt[3]{6+\sqrt[3]{x+6}}+4\right)\left(\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4\right)}=0\)
\(\Leftrightarrow x=2.\)