a) 2 x 2 - 3x + 1 = 0
a = 2; b = - 3; c = 1 ⇒ a + b + c = 0
Do đó phương trình có nghiệm x 1 = 1; x 2 = 1/2
a) 2 x 2 - 3x + 1 = 0
a = 2; b = - 3; c = 1 ⇒ a + b + c = 0
Do đó phương trình có nghiệm x 1 = 1; x 2 = 1/2
Giải phương trình sau: 3x2 - 5x + 2 = 0
Giải hệ phương trình sau:
{3x - 4y = 1
{x + 5y = 0
Giải hệ phương trình: 3xy + x + y = 0 và 3x^2y = y^2 + 2
bài 1: giải các phương trình sau :
a) x^3-5x=0 b) căn bậc 2 của x-1=3
bài 2 :
cho hệ phương trình : {2x+my;3x-y=0 (I)
a) giải hệ phương trình khi m=0
b) tìm giá trị của m để hệ (I) có nghiệm (x;y) thỏa mãn hệ thức :
x-y+m+1/m-2=-4
bài 3:giải các phương trình sau
a)5x-2/3=5x-3/2 b) 10x+3/12=1+6x+8/9 c) 2(x+3/5)=5-(13/5+x) d) 7/8x-5(x-9)=20x+1,5/6
a, Giải hệ phương trình: 3 x - 2 y + 1 = 1 5 x + 2 y + 1 = 3
b, Cho phương trình x 2 – (m – 1)x – m 2 – 1 = 0 với x là ẩn và m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn x 1 + x 2 = 2 2
Giúp mình với, mình đang cần gấp :))
1) Cho hệ phương trình \(\hept{\begin{cases}\text{mx-y = 2m+1 }\\3x+2y=2m+7\end{cases}}\)
a) Giải và biện luận hệ pt.
b) Tìm m để hệ có nghiệm duy nhất x+y>0
2) Cho hệ phương trình \(\hept{\begin{cases}2x-y=m-1\\3x+y=4m+1\end{cases}}\)
Tìm m để hệ có nghiệm duy nhất x+y>1
3) Cho hệ phương trình \(\hept{\begin{cases}x-2y=4-m\\2x+y=8+3m\end{cases}}\)
a) Giải và biện luận hệ phương trình.
b) Tìm m để hệ có nghiệm duy nhất thỏa man x2 + y2 đạt GTNN
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
Câu 2 . Cho phương trình: x’ – 2(m-1)x – 2m+1=0 (m là tham số). a) Giải phương trình với m=4 b) Tìm các giá trị của m để phương trình có hai nghiệm x và y thỏa mãn 2x, +3x=-11 cứu tuii:((
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2-6x+y^2+6y-2xy+9=0\\2x^2+3x+y-\left(3x+1\right)\sqrt{y}-2=0\end{matrix}\right.\)