Điều kiện \(x\ge0.\) Phương trình tương đương với (chuyển vế, bình phương)
\(\left(\sqrt{x}+\sqrt{x+9}\right)^2=\left(\sqrt{x+1}+\sqrt{x+4}\right)^2\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x}=2x+5+2\sqrt{x^2+5x+4}\)
\(\Leftrightarrow\left(2+\sqrt{x^2+9x}\right)^2=x^2+5x+4\Leftrightarrow4+4\sqrt{x^2+9x}+x^2+9x=x^2+5x+4\)
\(\Leftrightarrow4x+4\sqrt{x^2+9x}=0\)
Vì \(x\ge0\) nên vế trái luôn không âm. Do đó để có dấu bằng thì \(x=0\) (thỏa mãn).
Vậy phương trình có nghiệm duy nhất \(x=0\).
Câu trả lời hay nhất: Hình như đề bài này phải là : √(x+4)+√(x-4)+12-2x=2√(x^2-16) ak?
Nếu đúng như t viết thì làm như sau
Đặt √(x+4) + √(x-4) = t ( với t> = 0)
=> ( √(x+4) +√(x-4) ) ^2 = t^2
<=> 2x + 2√(x+4)(x-4) = t^2
<=>2x + 2 √(x^2-16) = t^2 (**)
pt tương đương với
t+12 = t^2
<=> t^2 -t -12 =0
<=> t=4 hoặc t= -3 ( loại vì t> = 0)
t= 4 thay vào (**) ta đc
2x+ 2√(x^2-16) = 4^2
<=> x + √(x^2-16) = 8
<=> √(x^2-16) = 8-x
<=> x^2 -16 = (8-x)^2 ( với x< =8 )
<=> x^2 -16 = 64 -16x + x^2
<=> 16x = 80
<=> x = 5 ( thỏa mãn )
vậy nghiệm pt là x= 5
____________Xuân Toàn ____________