\(\hept{\begin{cases}\sqrt{x-7}+\sqrt{9-x}\le\sqrt{2\left(x-7+9-x\right)}=2\\x^2-16x+66\ge2\end{cases}}.Dau"="?\)
ĐK: \(7\le x\le9\)
Áp dụng bunhiacopxki ta có:
\(\left(1.\sqrt{x-7}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-7+9-x\right)=4\)
=> \(\sqrt{x-7}+\sqrt{9-x}\le2\)(1)
Mặt khác: \(x^2-16x+66=x^2-2.x.8+64+2=\left(x-8\right)^2+2\ge2\)
=> \(x^2-16x+66\ge2\)(2)
Từ (1) và (2) ta có: \(\sqrt{x-7}+\sqrt{9-x}\le x^2-16x+66\)
Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}x^2-16x+66=2\\\sqrt{x-7}+\sqrt{9-x}=2\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-8\right)^2=0\\\frac{\sqrt{x-7}}{1}=\frac{\sqrt{x-9}}{1}\end{cases}\Leftrightarrow}x=8\) ( tm đk)
Vậy x = 8.