Bài làm:
Ta có: \(x^2-22x+127=\left(x^2+22x+121\right)+6=\left(x+11\right)^2\ge6\left(\forall x\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(\sqrt{x-2}+\sqrt{20-x}\right)^2\le\left(1^2+1^2\right)\left[\left(\sqrt{x-2}\right)^2+\left(\sqrt{20-x}\right)^2\right]\)
\(=2\left(x-2+20-x\right)=2.18=36\)
\(\Rightarrow\sqrt{x-2}+\sqrt{20-x}\le\sqrt{36}=6\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-11\right)^2\\x-2=20-x\end{cases}}\Rightarrow x=11\)
đkxđ: \(2\le x\le22\)
Nhầm đkxđ phải là: \(2\le x\le20\)