Answer:
\(\sin x+4\cos x=2+\sin2x\)
\(\Leftrightarrow\sin x-2+4\cos x-2\sin x\cos x=0\)
\(\Leftrightarrow\sin x-2+2\cos x\left(2-\sin x\right)=0\)
\(\Leftrightarrow\left(\sin x-2\right)\left(1-2\cos x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sin x=2\text{(Loại)}\\\cos x=\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow x=\pm\frac{\text{π}}{3}+k2\text{π}\left(k\inℤ\right)\)