Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đõ Phương Thảo

giải phương trình sau

x4+(x+1)(5x2-6x-6)=0

Kiệt Nguyễn
5 tháng 11 2019 lúc 16:18

\(x^4+\left(x+1\right)\left(5x^2-6x-6\right)=0\)

\(\Leftrightarrow x^4+5x^3-x^2-12x-6=0\)

\(\Leftrightarrow x^4-x^3+6x^3-x^2-6x^2+6x^2\)

\(-6x-6x-6=0\)

\(\Leftrightarrow\left(x^4-x^3-x^2\right)+\left(6x^3-6x^2-6x\right)+\)

\(\left(6x^2-6x-6\right)=0\)

\(\Leftrightarrow x^2\left(x^2-x-1\right)+6x\left(x^2-x-1\right)+\)

\(6\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left(x^2+6x+6\right)\left(x^2-x-1\right)=0\)

\(TH1:x^2+6x+6=0\)

Ta có: \(\Delta=6^2-4.6=12\sqrt{\Delta}=\sqrt{12}\)

pt có 2 nghiệm:

\(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\)

\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\)

\(TH2:x^2-x-1=0\)

Ta có: \(\Delta=1^2+4.1=5,\sqrt{\Delta}=\sqrt{5}\)

pt có 2 nghiệm:

\(x_1=\frac{1+\sqrt{5}}{2}\)và \(x_2=\frac{1-\sqrt{5}}{2}\)

Vậy pt có 4 nghiệm \(x_1=\frac{-6+\sqrt{12}}{2}=-3+\sqrt{3}\);\(x_2=\frac{-6-\sqrt{12}}{2}=-3-\sqrt{3}\);

\(x_3=\frac{1+\sqrt{5}}{2}\);\(x_4=\frac{1-\sqrt{5}}{2}\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
6 tháng 11 2019 lúc 12:03

Làm tốt rồi nhưng mà lớp 8 chưa học cách giải pt bậc 2 \(\Delta\). Thì chúng ta có thể:

VD TH1: \(x^2+6x+6=0\)

<=> \(x^2+6x+9-9+6=0\)

<=> \(\left(x+3\right)^2=3\)

<=> \(\orbr{\begin{cases}x+3=\sqrt{3}\\x+3=-\sqrt{3}\end{cases}}\)<=> \(\orbr{\begin{cases}x=-3+\sqrt{3}\\x=-3-\sqrt{3}\end{cases}}\)

tương tự Th2.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Chu Phạm Lan Vy
Xem chi tiết
02.HảiAnh Bùi Lưu
Xem chi tiết
Khánh Trần
Xem chi tiết
Tran  Hoang Phu
Xem chi tiết
chung lê đức
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Băng Thiên
Xem chi tiết