\(\frac{9x}{2x^2+x+3}-\frac{x}{2x^2-x+3}=8\)
\(\Leftrightarrow9x\left(2x^2-x+3\right)-x\left(2x^2+x+3\right)=8\left(2x^2+x+3\right)\left(2x^2-x+3\right)\)
\(\Leftrightarrow16x^3-10x^2+35x=32x^4-88x^2+88x-192\)
\(\Leftrightarrow16x^3-10x^2+35x-32x^4+88x^2-88x+192=0\)
\(\Leftrightarrow16x^3+78x^2-53x-32x^4+192=0\)
Nhưng vì \(16x^3+78x^2-53x-32x^4+192\ne0\)
Nên: phương trình vô nghiệm.