x3 - 6x2 - 9x +14 = 0
<=> x3 - 1 - 6x2 - 9x + 15 = 0
<=> (x - 1)(x2 + x + 1) - 6x2 + 6x - 15x + 15 = 0
<=> (x - 1)(x2 + x + 1) - 6x(x - 1) - 15(x - 1) = 0
<=> (x - 1)(x2 - 5x - 14) = 0
<=> (x - 1)(x2 + 2x - 7x - 14) = 0
<=> (x - 1)[x(x + 2) - 7(x + 2)] = 0
<=> (x - 1)(x + 2)(x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc x - 7 = 0
<=> x = 1 hoặc x = -2 ; x = 7
Vậy \(x\in\left\{1;-2;7\right\}\)là nghiệm phương trình