\(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2+5\ge5\\\left(x-2\right)^2+9\ge9\end{matrix}\right.\)
\(\Rightarrow\sqrt{\left(x-2\right)^2+5}+\sqrt{\left(x-2\right)^2+9}\ge\sqrt{5}+\sqrt{9}=\sqrt{5}+3\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy pt có nghiệm duy nhất \(x=2\)
\(A=\sqrt{x^2-8x+16}+\sqrt{x^2-24x+144}\)
\(A=\sqrt{\left(x-4\right)^2}+\sqrt{\left(12-x\right)^2}\)
\(A=\left|x-4\right|+\left|12-x\right|\ge\left|x-4+12-x\right|=8\)
\(A_{min}=8\) khi \(\left(x-4\right)\left(12-x\right)\ge0\Leftrightarrow4\le x\le12\)