ta có: \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
<=> \(\left(x^2+x\right)+2.2.\left(x^2+x\right)+4-16=0\)
<=> \(\left[\left(x^2+x\right)^2+2.2\left(x^2+x\right)+4\right]=16\)
<=> \(\left(x^2+x+2\right)^2=16\)
<=> \(x^2+x+2=4\)hoặc \(x^2+x+2=-4\)
TH1: \(x^2+x+2=4\)=> x=1 ;-2
TH2 : \(x^2+x+2=-4\)=> vô nghiệm
Vậy S ={ -2;1}