Đặt \(\left|2x-1\right|=t\ge0\)
\(\Rightarrow t^2-2t-5=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{6}\\t=1-\sqrt{6}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left|2x-1\right|=1+\sqrt{6}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1+\sqrt{6}\\2x-1=-1-\sqrt{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{6}}{2}\\x=-\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
Đặt |2x−1|=t≥0|2�−1|=�≥0
⇒t2−2t−5=0⇒[t=1+√6t=1−√6<0(loại)⇒�2−2�−5=0⇒[�=1+6�=1−6<0(��ạ�)
⇒|2x−1|=1+√6⇒|2�−1|=1+6
⇒[2x−1=1+√62x−1=−1−√6⇒[2�−1=1+62�−1=−1−6