\(\Leftrightarrow x^2-3x+2=\left(1-x\right)\sqrt{3x-2}\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=-\left(x-1\right)\sqrt{3x-2}\)
\(\Leftrightarrow x-2=-\sqrt{3x-2}\)
\(\Leftrightarrow x^2-4x+4=3x-2\Leftrightarrow x=6;x=1\left(\text{nhận cả 2}\right)\)
Vậy................
\(\frac{x^2-3x+2}{\sqrt{3x-2}}+\left(x-1\right)=0\)
\(\left(x-1\right)\left(\frac{x-2}{\sqrt{3x-2}}+1\right)=0\)
\(\frac{x^2}{\sqrt{3x-2}}-\frac{3x-2}{\sqrt{3x-2}}=\frac{\left(\sqrt{3x-2}\right)\left(1-x\right)}{\sqrt{3x-2}}\)
\(x^2-3x+2+\sqrt{x^2-3x+2}=0\)
\(\sqrt{x^2-3x+2}\left(\sqrt{x^2-3x+2}+1\right)=0\)\(\sqrt{x^2-3x+2}=0hay\sqrt{x^2-3x+2}+1=0\left(vl\right)\)
còn lại tự làm nhé