Điều kiện: x khác (-3,-2,1,4)
PT <=>
\(1+\frac{2}{x-1}+1-\frac{4}{x+2}+1-\frac{6}{x+3}+1+\frac{8}{x-4}=4\)
<=> \(\frac{1}{x-1}-\frac{2}{x+2}-\frac{3}{x+3}+\frac{4}{x-4}=0\)
<=> (x+2)(x+3)(x-4)-2(x-1)(x+3)(x-4)-3(x-1)(x+2)(x-4)+4(x-1)(x+2)(x+3)=0
<=> (x3+x2-14x-24)-2(x3 - 2x2-11x+12) - 3(x3 - 3x2- 6x+8) + 4(x3+4x2 + x-6) = 0
<=> x3+x2-14x-24-2x3 + 4x2+22x-24 - 3x3 + 9x2+ 18x-24 + 4x3+16x2 + 4x-24 = 0
<=> 30x2 + 30x -96=0
<=> 5x2 + 5x -16 = 0
Giải ra được: \(\orbr{\begin{cases}x_1=\frac{-5-\sqrt{345}}{10}\\x_2=\frac{-5+\sqrt{345}}{10}\end{cases}}\)