\(\frac{100\left(x+20\right)}{x\left(x+20\right)}-\frac{100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\frac{2000}{x\left(x+20\right)}=\frac{1}{3}\)
\(\Rightarrow x^2+20x=3.2000\)
\(\Rightarrow x^2+20x-6000=0\)
ĐKXĐ: \(x\ne0;x\ne-2\)
Ta có: \(\frac{100x+2000-100x}{x\left(x+20\right)}=\frac{1}{3}\)
\(\Leftrightarrow\frac{2000}{x^2+20x}=\frac{1}{3}\)
\(\Leftrightarrow x^2+20x=6000\)
\(\Leftrightarrow x^2+2.10x+100=6100\)
\(\Leftrightarrow\left(x+10\right)^2=6100\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\sqrt{61}-10\left(TM\right)\\x=-10\sqrt{61}-10\left(TM\right)\end{cases}}\)
Vậy...