\(x^3-7x^2+12x-6=0\)
\(\Leftrightarrow x^2\left(x-1\right)-6x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-6x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x+6=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=3\\x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{3}\\x-3=-\sqrt{3}\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}+3\\x=-\sqrt{3}+3\\x=1\end{matrix}\right.\)
Vậy ...