d/ Điều kiện xác định : \(4\le x\le6\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)
\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)
Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)
Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)
Vậy pt có nghiệm x = 5
a/ ĐKXĐ : \(x\ge0\)
\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)
Tới đây xét các trường hợp :
1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)
2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)
3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)
Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)
b) ĐKXĐ : \(x\ge0,y\ge1\)
Ta có : \(x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left[\left(y-1\right)-4\sqrt{y-1}+4\right]=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2=0\)
\(\Leftrightarrow\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-2\right)^2=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=5\end{cases}\) (tmđk)
Vậy ........
c) ĐKXĐ: \(x\ge-4\)
pt <=> \(x+5-2\sqrt{x+4}+x^2+6x+9=0\)
<=> \(\frac{x^2+10x+25-4x-16}{x+5+2\sqrt{x+4}}+\left(x^2+6x+9\right)=0\)
<=> \(\frac{x^2+6x+9}{x+5+2\sqrt{x+4}}+\left(x^2+6x+9\right)=0\)
<=> \(\left(x^2+6x+9\right)\left(\frac{1}{x+5+2\sqrt{x+4}}+1\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x=-3\\vônghiệm\end{array}\right.\)
vậy x=-3