\(3x^4+7x^3+7x+3=0\)
\(\Leftrightarrow3x^4+9x^3+3x^2-2x^3-6x^2-2x+3x^2+9x+3=0\)
\(\Leftrightarrow3x^2\left(x^2+3x+1\right)-2x\left(x^2+3x+1\right)+3\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(3x^2-2x+3\right)=0\)
Mà \(3x^2-2x+3=3\left(x-\frac{1}{3}\right)^2+\frac{8}{3}>0\forall x\)
\(\Rightarrow x^2+3x+1=0\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-3}{2}\\x=\frac{-\sqrt{5}-3}{2}\end{cases}}\)