Cho \(x\ne0\),\(y\ne0\) và x+y=1. Tính\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(\text{cho }xy\ne0\text{ và x + y = 1 }\)
\(\text{Chứng minh rằng}:\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Chứng minh rằng nếu \(x+y=1\) và \(xy\ne0\) thì \(\frac{y}{x^3-1}-\frac{x}{y^3-1}=\frac{2\left(x-y\right)}{x^2y^2+3}\)
Cho x, y là các số thực thỏa mãn điều kiện \(x+y=1\)và \(x,y\ne0\)
Chứng minh rằng: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}-\frac{2.\left(x-y\right)}{x^2y^2+3}=0\)
Biết \(x+y=1\)và\(x.y\ne0\)
Chứng minh \(\frac{x}{y^3-1}+\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
Rút gọn:
a)\(\frac{6x^5y^2\left(x-y\right)^2}{4xy^6\left(y-x\right)^3}\)
b)\(\frac{x^2-16}{4x-x^2}\)\(\left(x\ne0,x\ne4\right)\)
c)\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)\(\left(x\ne0,x\ne\pm y\right)\)
d)\(\frac{\frac{1}{x}+\frac{1}{y}}{\frac{1}{x}-\frac{1}{y}}\)
e)\(\frac{\frac{x}{x+1}-\frac{x-1}{x}}{\frac{x}{x-1}-\frac{x+1}{x}}\)
f)\(1-\frac{x}{1-\frac{x}{x+1}}\)
g)\(\frac{1-\frac{2}{x+1}}{1-\frac{x^2-2}{x^2-1}}\)
^.^
Với \(x\ne0\)và \(y\ne0\)Chứng minh rằng
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)không phụ thuộc vào giá trị của x và y
1/ CMR : \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
2/ Xét \(A=\left(\frac{a+1}{ab+1}+\frac{ab+a}{ab-1}-1\right):\left(\frac{a+1}{ab+1}-\frac{ab+a}{ab-1}+1\right)\)
a/ rút gọn
b/ tìm GTNN mà A đạt được biết a + b = 4
3/ CMR giá trị biểu thức biểnsau ko phụ thuộc vào giá trị của biến
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\) khi \(x\ne0;y\ne0;x\ne y\)
\(B=\left[\left(\frac{x}{y}-\frac{y}{x}\right):\left(x-y\right)-2\left(\frac{1}{y}-\frac{1}{x}\right)\right]:\frac{x-y}{y}\)
\(C=\left(\frac{x+y}{2x-2y}-\frac{x-y}{2x+2y}-\frac{2y^2}{y-x}\right):\frac{2y}{x-y}\)
\(D=3x:\left\{\frac{x^2-y^2}{x^3+y^3}\left[\left(x-\frac{x^2+y^2}{y}\right):\left(\frac{1}{x}-\frac{1}{y}\right)\right]\right\}\)
\(E=\frac{2}{x\left(x+1\right)}+\frac{2}{\left(x+1\right)\left(x+2\right)}+\frac{2}{\left(x+2\right)\left(x+3\right)}\)