Đề có đúng không đây mà nghiệm lẻ thế?
\(x^2+xy+\frac{2}{x}=y^2+xy+\frac{2}{y}\leftrightarrow\left(x-y\right)\left(x+y\right)=\frac{2\left(x-y\right)}{xy}\) hay \(x=y\) hoặc \(x+y=\frac{2}{xy}.\)
Trường hợp 1. Nếu \(x=y\to2x^2+\frac{2}{x}=2007\leftrightarrow2x^3-2007x+2=0\leftrightarrow x=-31,679;31,678;\text{0.00099651}\)
Trường hợp 2. Nếu \(x+y=\frac{2}{xy}\to\frac{2}{y}+\frac{2}{x}=2007\to\frac{4}{x^2y^2}=2007\to xy=\pm\frac{2}{\sqrt{2007}}\to x+y=\pm\sqrt{2007}.\)
Đến đây áp dụng định lý Vieta thì \(x,y\) là nghiệm phương trình bậc 2.
Em có chắc đây là bài tập về toán hay xấp xỉ. Lần sau số lẻ thế này thì em nên tự làm, sẽ chẳng ai giúp em mấy thể loại này được!