Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hải Anh

Giải hpt:
\(\left\{\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)

Hung nguyen
2 tháng 2 2017 lúc 16:00

\(\left\{\begin{matrix}x^2+x-xy-2y=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(x+y+1\right)\left(2y-x\right)=0\\x^2+y^2=1\end{matrix}\right.\)

Với x + y + 1 = 0 \(\Rightarrow\)x = - y - 1 thế vô pt dưới được

\(\left(-y-1\right)^2+y^2=1\)

\(\Leftrightarrow\left[\begin{matrix}y=0\\y=-1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

Với 2y - x = 0 \(\Rightarrow\)2y = x thế vào pt dưới được

\(\left(2y\right)^2+y^2=1\)

\(\Leftrightarrow\left[\begin{matrix}y=\frac{1}{\sqrt{5}}\\y=-\frac{1}{\sqrt{5}}\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=\frac{2}{\sqrt{5}}\\x=-\frac{2}{\sqrt{5}}\end{matrix}\right.\)


Các câu hỏi tương tự
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết
lê thị tiều thư
Xem chi tiết
lê thị tiều thư
Xem chi tiết
Nona Phan
Xem chi tiết
Hải Anh
Xem chi tiết
Hải Anh
Xem chi tiết