Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Minh Quang

Giải hpt: \(\hept{\begin{cases}x+y+z=6\\xy+yz-xz=-1\\x^2+y^2+z^2=14\end{cases}}\)

Lê Minh Tú
11 tháng 12 2017 lúc 21:11

Nhân cả 2 vế của (2) với 2 ta được: \(2xy+2yx-2xz=14\left(4\right)\)

Lấy (3) trừ (4) ta được: \(x^2+y^2+z^2-2xy-2yx-2xz=0\)

\(\Leftrightarrow\left(x-y+z\right)^2=0\)

\(\Leftrightarrow y=x+z\)

Thay vào (1) ta được: \(y=x+z=3\)

Khi đó ta có hệ: \(\hept{\begin{cases}x+z=3\\x^2+y^2=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+z=3\\xz=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\z=1\end{cases}}\)

Vậy hệ đã cho có nghiệm: \(\left(1;3;2\right);\left(2;3;1\right)\)

Nguyễn Võ Thảo Vy
9 tháng 11 2018 lúc 21:13

Nhân 2 vế của (2) cho 2 

2xy+2yz-xz=(-1).2 

Why? bằng 14?

thế mà vẫn có người cho đúng 


Các câu hỏi tương tự
Nguyễn Ngọc Tho
Xem chi tiết
Nguyễn Ngọc Tho
Xem chi tiết
Minh Hà Tuấn
Xem chi tiết
Thanh Tâm
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Blue Moon
Xem chi tiết
My Phan
Xem chi tiết
Li Ying
Xem chi tiết
Thành Nguyễn Khắc
Xem chi tiết