\(\left\{{}\begin{matrix}a.b=140\\\left(a+5\right)\left(b-1\right)=150\end{matrix}\right.< =>\left\{{}\begin{matrix}b=\dfrac{140}{a}\left(1\right)\\\left(a+5\right)\left(b-1\right)=150\left(2\right)\end{matrix}\right.\)(\(a\ne0\))
thế(1) vào(2)\(=>\left(a+5\right)\left(\dfrac{140}{a}-1\right)=150\)
\(< =>140-a+\dfrac{700}{a}-5=150\)
\(< =>\dfrac{700}{a}-a=15\)
\(< =>\dfrac{700-a^2}{a}=15=>-a^2+700=15a< =>-a^2-15a+700=0\)
\(\Delta=\left(-15\right)^2-4\left(-1\right)700=3025>0\)
\(=>\left[{}\begin{matrix}a1=\dfrac{15+\sqrt{3025}}{2\left(-1\right)}=-35\left(TM\right)\\a2=\dfrac{15-\sqrt{3025}}{2\left(-1\right)}=20\left(TM\right)\end{matrix}\right.\)
với a=a1=-35 thay vào(1)=>\(b=\dfrac{140}{-35}=-4\)
với a=a2=20 tahy vào (1)=>\(b=\dfrac{140}{20}=7\)
Vậy(a,b)={(-35;-4);(20;7)}