Tìm GT của a và b để hệ PT (I):\(\hept{\begin{cases}5x+6y=4\\4x-9y=17\end{cases}}\)tương đương với hệ PT\(\hept{\begin{cases}2ax+\left(3b-4\right)y=3a-1\\\left(a+3\right)x-3\left(b+1\right)y=6b+8\end{cases}}\)
CMR : \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\left(a,b>0\right)\)
Giải hệ PT \(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\x+z-y=b\end{cases}}\)
Cho các số thực a, b, c không âm thỏa \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Tìm GTNN của \(P=\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Tìm tất cả các bộ số nguyên (a,b,c,d) thỏa mãn: \(\hept{\begin{cases}a^3+3b=c^3\\b^3+3a=d^3\end{cases}}\)
Ai giải giúp e vs ạ
Cho a,b,c>0 và abc=1. Chứng minh rằng:
\(\frac{2}{a^3b+a^3c}+\frac{2}{b^3a+b^3c}+\frac{2}{c^3a+c^3b}\ge3\)
Cho a,b,c thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3 chứng minh (a+2b)(b+2c)(c+2a)=1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1
với các số a,b,c là các số thực thỏa mãn (3a+3b+3c)3 = 24 + (3a+b-c)3 + (3b+c-a)3 + (3c+a-b)3
CMR (a+2b) (b+2c) (c+2a) = 1