Xét pt thứ nhất \(\Leftrightarrow\sqrt{4x^2+4xy+4y^2}+\sqrt{4y^2+4yz+4z^2}+\sqrt{4z^2+4xz+4x^2}=6\)
\(\Leftrightarrow\sqrt{3\left(x-y\right)^2+\left(x+y\right)^2}+\sqrt{3\left(y-z\right)^2+\left(y+z\right)^2}+\sqrt{3\left(z-x\right)^2+\left(z+x\right)^2}=6\)
\(VT\ge x+y+y+z+z+x=2\left(x+y+z\right)=6\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)