x^3 - 5x = y^3 - 5y (1)
x^2 + y^4 = 1 (2)
Từ (1) => \(x^3-y^3-5x+5y=0\Rightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-5\left(x-y\right)=0\)
=> \(\left(x-y\right)\left(x^2+xy+y^2-5\right)=0\)
=> \(x=y\) hoặc \(x^2+xy+y^2=5\)
(+) thay x = y vào (2) ta có : \(x^4+x^2=1\)
đặt x^2 = t (ĐK t>= 0 )pt <=> t^2 + t = 1
giải ra t
(+) TH2 :\(x^2+xy+y^2=5\) (3)
ta có : \(x^2+y^4=1\Rightarrow0\le x;y\le1\)
=> \(0