Đk: x, y khác 0
Đặt: \(\frac{1}{x}=u;\frac{1}{y}=v\)
ta có hệ phương trình:
\(\hept{\begin{cases}u-v=1\\2u+4v=5\end{cases}}\)Giải u; v sau đó tìm x, y.
Đk: x, y khác 0
Đặt: \(\frac{1}{x}=u;\frac{1}{y}=v\)
ta có hệ phương trình:
\(\hept{\begin{cases}u-v=1\\2u+4v=5\end{cases}}\)Giải u; v sau đó tìm x, y.
giải hệ pt sau
\(\hept{\begin{cases}\frac{1}{x}+\frac{2}{y}=\frac{1}{3}\\\frac{2}{x}-\frac{3}{y}=\frac{1}{4}\end{cases}}\)
1)giải các hệ PT sau bằng pp cộng đại số:
a)\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)
b)\(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\)
c)\(\hept{\begin{cases}\frac{2}{3}x+\frac{4}{3}y=1\\\frac{1}{2}x-\frac{3}{4}y=1\end{cases}}\)
giải hệ pt sau
\(\hept{\begin{cases}\frac{2}{x+1}+\frac{1}{y-2}=\frac{1}{3}\\\frac{3}{x+1}+\frac{2}{y-2}=\frac{1}{5}\end{cases}}\)
Giải các hệ phương trình:
a) \(\hept{\begin{cases}\frac{1}{z}+\frac{1}{x+y}=\frac{1}{4}\\\frac{1}{y}+\frac{1}{z+x}=\frac{1}{3}\\\frac{1}{x}+\frac{1}{y+z}=\frac{1}{2}\end{cases}}\)
b)\(\hept{\begin{cases}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{cases}}\)
c)\(\hept{\begin{cases}\frac{x}{y}-\frac{y}{x}=\frac{5}{6}\\x^2-y^2=5\end{cases}}\)
Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
giải 2 hệ PT sau :
\(\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\)
\(\hept{\begin{cases}x+y=90\\\frac{10}{x}-\frac{10}{y}=\frac{1}{20}\end{cases}}\)
Giải hệ pt \(\hept{\begin{cases}\frac{x^2}{x+1}+\frac{y^2}{y-1}=4\\\frac{x+2}{x+1}+\frac{y-2}{y-1}=y-x\end{cases}}\)
Giải hệ pt \(\hept{\begin{cases}\frac{x+2}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}\)
giải hệ PT sau :
\(\hept{\begin{cases}x+3y-5=xy\\\frac{1}{x-1}+\frac{1}{y-2}=2\end{cases}}\)