giải hệ phương trình: \(\hept{\begin{cases}a.\left(a+b\right)=3\\b.\left(b+c\right)=30\\c.\left(c+a\right)=12\end{cases}}\)
Bài 1: Cho hệ phương trình: \(\hept{\begin{cases}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{cases}}\)
Giả sử (x; y) là nghiệm của hệ phương trình. Xác định a để xy đạt GTNN. Tìm GTNN đó.
Bài 2: Giải hệ phương trình: \(\hept{\begin{cases}\left(c+a\right)y+\left(a+b\right)z-\left(b+c\right)x=2a^3\\\left(a+b\right)z+\left(b+c\right)x-\left(c+a\right)y=2b^3\\\left(b+c\right)x+\left(c+a\right)y-\left(a+b\right)z=2c^3\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}\left(a+b\right)\left(x+y\right)-cz=a-b\\\left(b+c\right)\left(y+z\right)-ax=b-c\\\left(a+c\right)\left(x+z\right)-by=c-a\end{cases}}\)
Giải hệ phương trình:
a)\(\hept{\begin{cases}x\left(y+z\right)=8\\y\left(z+x\right)=18\\z\left(x+y\right)=20\end{cases}}\)
b)\(\hept{\begin{cases}5xy=6\left(x+y\right)\\7yz=12\left(y+z\right)\\3xz=4\left(x+z\right)\end{cases}}\)
c)\(\hept{\begin{cases}x+y+xy=1\\x+z+xz=2\\y+z+yz=5\end{cases}}\)
Tìm GT của a và b để hệ PT (I):\(\hept{\begin{cases}5x+6y=4\\4x-9y=17\end{cases}}\)tương đương với hệ PT\(\hept{\begin{cases}2ax+\left(3b-4\right)y=3a-1\\\left(a+3\right)x-3\left(b+1\right)y=6b+8\end{cases}}\)
Bài 1: Giải các hệ phương trình sau
a) \(\hept{\begin{cases}\left|x\right|+3y=5\\-x+y=-1\end{cases}}\)
b)\(\hept{\begin{cases}y=2\left|x-1\right|+3\\x=2y-5\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+y\right)\left(x-2y\right)=0\\x-5y=3\end{cases}}\)
giải hệ phương trình
a,\(\hept{\begin{cases}xy=x+3y\\yz=2\left(2y+z\right)\\zx=3\left(3z+2x\right)\end{cases}}\)
b,\(\hept{\begin{cases}x-y=3\\x^3-y^3=9\end{cases}}\)
c,\(\hept{\begin{cases}x-y=\left(\sqrt{y}-\sqrt{x}\right)\left(xy+1\right)\\x^3+y^3=54\end{cases}}\)
CMR : \(\frac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\frac{1}{2}\left(a,b>0\right)\)
Giải hệ PT \(\hept{\begin{cases}x+y-z=c\\y+z-x=a\\x+z-y=b\end{cases}}\)
Giải hệ phương trình ;
\(\hept{\begin{cases}\frac{1}{a-1}+\frac{1}{b-2}+\frac{1}{c-3}=1\\\frac{1}{\left(a-1\right)^2}-\frac{2}{\left(b-2\right)\left(c-3\right)}=-1\end{cases}}\)