ai giup minh giai cai bai nay voi
\(\hept{\begin{cases}x^2+y^2+2x+2y=11\\xy\left(x+2\right)\left(y+2\right)=24\end{cases}}\)
voi bai \(\hept{\begin{cases}x+y+xy=1\\x+z+xz=3\\z+y+yz=7\end{cases}}\)
giai he phuong trinh sau :
x^3 - x^2 y^2 - y^3 + 1 = 0 va x^3 + xy - 2 = 0
giai hpt y^2(x^2-3)+xy+1=0 va y^2(3x^2-6)+xy+2=0
Tìm nghiệm nguyên pt:
2y(2x2+1)-2x(2y2+1)+1=x3y3
giup to giai voi
giai he pt voi x,y>0
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{18}\\\frac{x}{3y}+\frac{y}{3x}=\frac{13}{18}\end{cases}}\)
giai hệ pt
\(\hept{\begin{cases}x^2+xy+y^2=3\\z^2+yz+1=0\end{cases}}\)
\(\hept{\begin{cases}x+6\sqrt{xy}-\sqrt{y}=0\\x+\frac{6\left(x^3+y^3\right)}{x^2+xy+y^2}-\sqrt{2\left(x^2+y^2\right)}=3\end{cases}}\)
giai ho voi
tim min cua
\(A=\frac{\left(x+y+1\right)^2}{xy+x+y}+\frac{xy+x+y}{\left(x+y+1\right)^2}\) (voi x,y la so thuc duong)
giai he pt
\(x^3+y^3=1+y-x+xy\)
\(7xy+y-x=7\)
GIAI HE PT
\(\left(y-1\right)\left(x^2+6\right)=x\left(y^2+1\right)\)
\(\left(x-1\right)\left(y^2+6\right)=y\left(y^2+1\right)\)