pt 1 =>x(y+1)=8-y=>x=(8-y)/(y+1)
thay vô 2
bạn đặt xy=b,x+y=a
tách cái dưới theo a,b,,,,,biets thêm,,lên mạng tra,,hpt đối xứng
pt 1 =>x(y+1)=8-y=>x=(8-y)/(y+1)
thay vô 2
bạn đặt xy=b,x+y=a
tách cái dưới theo a,b,,,,,biets thêm,,lên mạng tra,,hpt đối xứng
1. Giải phương trình: \(\sqrt{x-2}+\sqrt{4-x}=\sqrt{2}\) .
2. Giải phương trình: \(4x^4-7x^3+9x^2-10x+4=0\).
3. Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+y^2=3-xy\\x^4+y^4=2\end{matrix}\right.\) .
giải hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{3}{8}\\\dfrac{y+x}{yz}=\dfrac{3}{4}\\\dfrac{x+z}{xz}=\dfrac{5}{6}\end{matrix}\right.\)
giải hệ phương trình:
a)\(\hept{\begin{cases}x^2+y^2+z^2=8\\xy+yz+xz=4\\x+y+z=4\end{cases}}\)
b)\(\hept{\begin{cases}x^4+x^3y+9y=y^3x+x^2y^2\\xy^3-x^4=7\end{cases}}\).
giải hệ phương trình ;
\(\hept{\begin{cases}\left|xy-4\right|=8-y^2\\xy=2+x^2\end{cases}}\)
Giải hệ phương trình \(|xy-4|=8-y^2\) và \(xy=2+x^2\)
Giải hệ phương trình \(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)
Giải hệ phương trình
1) x⁴/y² + xy = 72
y⁴/x² + xy = 9
2) x² + (1+y)² = 1
y² + (1+x)² = 1
3) 7 + 2√x - x = (2+√x)√(7-x)
4) √(x+2) - √(3-x) = x² - 6x + 8
Giải hệ phương trình : \(\hept{\begin{cases}\left(x+y\right)^4+3=4\left(x+y\right)\\\frac{x^4-y^4}{64}+\frac{9\left(x^2-y^2\right)}{32}+\frac{7\left(x-y\right)}{8}+3In\left(\frac{x-3}{y-3}\right)=0\end{cases}}\)
3In
Giải hệ phương trình
1. x⁴/y² + xy = 72
y⁴/x² + xy = 9
2. x² + (1+y)² = 1
y² +(1+x)² = 1
3. 7 + 2√x - x = (2+√x)√(7-x)
4. √(x+2) - √(3-x) = 2² - 6x + 8