Giải hệ phương trình \(\hept{\begin{cases}\frac{x}{x^2-y}+\frac{5y}{x+y^2}=4\\5x+y+\frac{X^2-5y^2}{xy}=6\end{cases}}\)
TÌM NGHIỆM NGUYÊN CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}xy=x+y+z\\xz=2\left(x-y+z\right)\\yz=3\left(y-x+z\right)\end{cases}}\)
TÌM NGHIỆM NGUYÊN DƯƠNG CỦA HỆ PHƯƠNG TRÌNH
1, \(\hept{\begin{cases}x=5y+3\\x=11z+7\end{cases}}\)(x, y, z nhỏ nhất)
2,\(\hept{\begin{cases}x+2y+3z=20\\3x+5y+4z=37\end{cases}}\)(x, y, z nhỏ nhất)
3, \(\hept{\begin{cases}z+y=x+10\\yz=10x+1\end{cases}}\)
4, \(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{cases}}\)
GIẢI PHƯƠNG TRÌNH
1, \(x^2-2x=2\sqrt{2x-1}\)
2,\(\frac{3x}{\sqrt{3x+10}}=\sqrt{3x+1}-1\)
MỌI NGƯỜI GIẢI GIÚP MÌNH VỚI
Bài 1: Giải các hệ phương trình sau
a) \(\hept{\begin{cases}\left|x\right|+3y=5\\-x+y=-1\end{cases}}\)
b)\(\hept{\begin{cases}y=2\left|x-1\right|+3\\x=2y-5\end{cases}}\)
c) \(\hept{\begin{cases}\left(x+y\right)\left(x-2y\right)=0\\x-5y=3\end{cases}}\)
giải hệ phương trình : a)\(\hept{\begin{cases}x+3y=4\\2x+5y=7\end{cases}}\)\(\hept{\begin{cases}3x+2y=1\\3x+y=2\end{cases}}\)
giải hệ phương trình
a. \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
b,\(\hept{\begin{cases}\sqrt{7x+y}+\sqrt{2x+y}=5\\\sqrt{2x+y}+x-y=2\end{cases}}\)
c,\(\hept{\begin{cases}4\left(x^2+y^2\right)+4xy+\frac{3}{\left(x+y\right)^2}=7\\\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}xy+\sqrt{2\left(x^4+y^4\right)}=3\\x^5y+xy^5=2\end{cases}}\)
giải các hệ phương trình
\(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)\(\hept{\begin{cases}x+x^2+x^3+x^4=y+y^2+y^3+y^4\\x^2+y^2=1\end{cases}}\)Giải hệ phương trình: \(\hept{\begin{cases}3\sqrt{x+2y-2}+\sqrt{y-2x}=5\\2\sqrt{y-2x}-5y-10x-4=0\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}xy+\sqrt{2\left(x^4+y^4\right)}=3\left(1\right)\\x^5y+xy^5=2\left(2\right)\end{cases}}\)