Giải các hệ phương trình sau:
\(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)\(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}}\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}}\)\(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\)
\(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\)
\(\hept{\begin{cases}x^2+y^2+xy=7\\\\x^4+y^4+\left(xy\right)^2=21\end{cases}}\)GIẢI HỆ PHƯƠNG TRÌNH SAU
Giải hệ phương trình với x, y nguyên :
a)\(\hept{\begin{cases}\left(xy+1\right)^2=25\\\left(x+y\right)^2=49\end{cases}}\)
b) \(\hept{\begin{cases}\left(xy+1\right)^2=49\\\left(x+y\right)^2=25\end{cases}}\)
Giải hệ phương trình:
a) \(\hept{\begin{cases}x^4+y^4=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2+y^2\right)\left(x^2-y^2\right)=144\\\sqrt{x^2+y^2}-\sqrt{x^2-y^2}=y\end{cases}}\)
c) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}\left|xy-2\right|=4-y^2\\x^2-xy+1=0\end{cases}}\)
Giải Hệ phương trình sau:
\(\hept{\begin{cases}\left(x+y\right)\left(1+\frac{1}{xy}\right)=4\\\\xy+\frac{1}{xy}+\frac{x^2+y^2}{xy}=4\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}xy+\sqrt{2\left(x^4+y^4\right)}=3\left(1\right)\\x^5y+xy^5=2\left(2\right)\end{cases}}\)
Giải hệ phương trình
\(\hept{\begin{cases}xy\left(x-y\right)=-2\\x^8-y^8=2\end{cases}}\)
Giải hệ phương trình :
\(\hept{\begin{cases}xy+\sqrt{2\left(x^4+y^4\right)}=3\\x^3y+xy^5=2\end{cases}}\)