Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Thông Minh

Giải hệ phương trình :

\(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\end{cases}}\)

IS
29 tháng 3 2020 lúc 18:16

ta có điều kiện \(x\ne0;y\ne0\)ta có

\(\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\Leftrightarrow\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(-x^3y^3\right)=3.\frac{1}{x}.\frac{1}{y}.\left(-xy\right)\Leftrightarrow\orbr{\begin{cases}\frac{1}{x}=\frac{1}{y}=-xy\\\frac{1}{x}+\frac{1}{y}-xy=0\end{cases}}\)

TH1 : ta có \(\frac{1}{x}=\frac{1}{y}=-xy\Leftrightarrow\hept{\begin{cases}x=y\\1=-x^2y\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}}\)(thử zô (1) ko thỏa mãn )

TH2 :ta có \(\frac{1}{x}+\frac{1}{y}-xy=0\Leftrightarrow x+y=\left(xy\right)^2\)ta có

\(\left(1\right)\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\Leftrightarrow xy\left(3xy+2\right)=0\Leftrightarrow xy=-\frac{2}{3}\)

\(\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\left(1\right)\\\frac{1}{x^3}+\frac{1}{y^3}+3=x^3y^3\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}=3+x^2y^2\\\orbr{\begin{cases}\frac{1}{x}=\frac{1}{y}=-xy\\\frac{1}{x}+\frac{1}{y}-xy=0\end{cases}}\end{cases}}}\)zậy \(\hept{\begin{cases}x+y=\left(xy\right)^2\\xy=-\frac{2}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2+\sqrt{58}}{9}\\y=\frac{2-\sqrt{58}}{9}\end{cases}hoặc\hept{\begin{cases}x=\frac{2-\sqrt{58}}{9}\\y=\frac{2+\sqrt{58}}{9}\end{cases}}}}\)

Khách vãng lai đã xóa
Phạm Quang Phong
3 tháng 7 2020 lúc 15:12

51222114

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Lan
Xem chi tiết
Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Diệp Song Thiên
Xem chi tiết
nguyen la nguyen
Xem chi tiết
Princess U
Xem chi tiết
Bao Cao Su
Xem chi tiết
binn2011
Xem chi tiết
Trương Trọng Tiến
Xem chi tiết
Đinh Thị Hải Thanh
Xem chi tiết