\(\hept{\begin{cases}3x+2y=30\left(1\right)\\2x+3y=35\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta có:
\(3x+2y-2x-3y=30-35\)
\(\Leftrightarrow x-y=-5\)(3)
Lấy (2) + (1) ta có:
\(2x+3y+3x+2y=30+35\)
\(\Leftrightarrow5\left(x+y\right)=65\)
\(\Leftrightarrow x+y=13\)(4)
Từ (3) và (4) ta có:
\(\hept{\begin{cases}x-y=-5\\x+y=13\end{cases}}\)
Đến đây bạn tự làm nốt nhé~
\(\hept{\begin{cases}3x+2y=30\left(1\right)\\2x+3y=35\left(2\right)\end{cases}}\)
Nhân 2/3 vào từng vế của (1)
hpt <=> \(\hept{\begin{cases}2x+\frac{4}{3}y=20\left(3\right)\\2x+3y=35\end{cases}}\)
Lấy (3) trừ (2) theo vế
=> \(2x+\frac{4}{3}y-2x-3y=20-35\)
=>\(-\frac{5}{3}y=-15\)
=> \(y=9\)
Thế y = 9 vào (1)
=> \(3x+2\cdot9=30\)
=> \(3x+18=30\)
=> \(3x=12\)
=> \(x=4\)
Vậy hệ phương trình có một nghiệm \(\hept{\begin{cases}x=4\\y=9\end{cases}}\)