Hệ phương trình đối xứng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Triệu Tiểu Linh

Giải hệ phương trình :

      \(\begin{cases}3x^2+4x+2\ln\left(3x+1\right)=2y\\3y^2+4y+2\ln\left(3y+1\right)=2x\end{cases}\)

Lê Ngọc Phương Linh
14 tháng 5 2016 lúc 21:50

Điều kiện : \(x>-\frac{1}{3};y>-\frac{1}{3}\). Lấy hai phương trình của hệ trừ nhau :

\(3x^2+4x+2\ln\left(3x+1\right)-3y^2+4y+2\ln\left(3y+1\right)=2y-2x\left(1\right)\)

\(\Leftrightarrow3x^2+6+2\ln\left(3x+1\right)=3y^2+6y+2\ln\left(3y+1\right)\left(2\right)\)

Xét hàm số \(f\left(t\right)=3t^2+6t+2\ln\left(3t+1\right)\) trên khoảng \(\left(-\frac{1}{3};+\infty\right)\)

Ta có : \(f'\left(t\right)=6t+6+\frac{6}{3t+1}>0\), với mọi \(t\in\left(-\frac{1}{3};+\infty\right)\)

Vậy hàm số \(f\left(t\right)\) đồng biên trên khoảng  \(\left(-\frac{1}{3};+\infty\right)\). Từ đó (2) xảy ra khi và chỉ khi x = y. Thay vào hệ phương trình đã cho, ta được :

  \(3x^2+4x+2\ln\left(3x+1\right)=2x\)

\(\Leftrightarrow3x^2+2x+2\ln\left(3x+1\right)=0\) (3)

Dễ thấy x = 0 thỏa mãn (3)

Xét hàm số \(g\left(x\right)=3x^2+2x+2\ln\left(3x+1\right)\)

Ta có : \(g'\left(x\right)=6x+2+\frac{5}{3x+1}>0\) với mọi \(x>-\frac{1}{3}\)Vậy hàm số \(g\left(x\right)\) đồng biến trên  \(\left(-\frac{1}{3};+\infty\right)\)suy ra x = 0 là nghiệm duy nhất của (3)Hệ phương trình ban đầu có nghiệm (x;y) = (0;0)

Các câu hỏi tương tự
Đặng Minh Quân
Xem chi tiết
Nguyễn Đức Đạt
Xem chi tiết
Nguyễn Hồng Anh
Xem chi tiết
Lại Thị Hồng Liên
Xem chi tiết
Nguyen Phuong
Xem chi tiết
Ngô Việt Hà
Xem chi tiết
Anh Trâm
Xem chi tiết
Phương Nguyễn
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết