Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Van Hung

Giải hệ:  \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-y^2+2x+y-3=0\end{cases}}\)

Kiệt Nguyễn
7 tháng 5 2020 lúc 10:41

\(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(1\right)\\x^2-y^2+2x+y-3=0\left(2\right)\end{cases}}\)

Nhân 2 vế của (2) với 2, ta được hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(3\right)\\2x^2-2y^2+4x+2y-6=0\left(4\right)\end{cases}}\)

Lấy (3) - (4) theo vế, ta có: \(\left(x^2-4xy+4y^2\right)-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-2y=1\\x-2y=2\end{cases}}\)

+) Với x - 2y = 1, thay vào (3) và rút gọn, ta có \(y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)

* Với \(y=0\Rightarrow x=1\)

* Với\(y=-3\Rightarrow x=-5\)

+) Với x - 2y = 2, thay vào (3) và rút gọn, ta có \(3y^2+13y+5=0\)(**)

Giải phương trình (**) thu được hai nghiệm \(\frac{-13+\sqrt{109}}{6}\)và \(\frac{-13-\sqrt{109}}{6}\)

* Với \(y=\frac{-13+\sqrt{109}}{6}\Rightarrow x=\frac{-7+\sqrt{109}}{3}\)

* Với \(y=\frac{-13-\sqrt{109}}{6}\Rightarrow x=\frac{-7-\sqrt{109}}{3}\)

Vậy hệ có 4 nghiệm (x;y) tương ứng là \(\left(1;0\right);\left(-5;-3\right);\)\(\left(\frac{-7+\sqrt{109}}{3};\frac{-13+\sqrt{109}}{6}\right);\)\(\left(\frac{-7-\sqrt{109}}{3};\frac{-13-\sqrt{109}}{6}\right)\)

Khách vãng lai đã xóa
Đỗ  Ngọc Thiên Ân
7 tháng 6 2020 lúc 20:34

/uc8tfghnm?u..........................hyuuttfd ggrs tdjtrthu a678t=45678/?

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Phúc Lộc
Xem chi tiết
Dương Thiên Tuệ
Xem chi tiết
Nguyễn Cảnh Kyf
Xem chi tiết
Hắc Thiên
Xem chi tiết
lê duy mạnh
Xem chi tiết
Cao Thành Long
Xem chi tiết
olm
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Trang-g Seola-a
Xem chi tiết