\(\left(4x-5\right)\left(-x^2-3x+4\right)>=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x^2+3x-4\right)< =0\)
=>(4x-5)(x+4)(x-1)<=0
BXD:
Theo BXD, ta được: x<=-4 hoặc 1<=x<=5/4
\(3x^2-7x+2>0\)
=>3x2-6x-x+2>0
=>(x-2)(3x-1)>0
=>x>2 hoặc x<1/3
=>x<=-4
\(\left(4x-5\right)\left(-x^2-3x+4\right)>=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x^2+3x-4\right)< =0\)
=>(4x-5)(x+4)(x-1)<=0
BXD:
Theo BXD, ta được: x<=-4 hoặc 1<=x<=5/4
\(3x^2-7x+2>0\)
=>3x2-6x-x+2>0
=>(x-2)(3x-1)>0
=>x>2 hoặc x<1/3
=>x<=-4
GIẢI CÁC HPT SAU:
a) \(\left\{{}\begin{matrix}3x-5\ge2x+12\\\frac{x-3}{2}\le\frac{2x+27}{3}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2-7x\ge x-14\\3x+1\ge6x-11\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}3x+\frac{3}{5}< x+2\\2x+3 >\frac{7x-3}{4}\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}\frac{4x+5}{2}< 4x-3\\x\left(x-1\right)\ge\left(x-3\right)\left(4+x\right)\end{matrix}\right.\)
GIÚP MIK VỚI
giải hệ pt: \(\left\{{}\begin{matrix}x+z=3\\\left(x+1\right)\left(z+2\right)^2+x\left(x+2\right)=30z+3\end{matrix}\right.\)
HELP ME!!!
\(\left\{{}\begin{matrix}\frac{4x-5}{7}< x+3\\\frac{3x+8}{4}>2x-5\end{matrix}\right.\)
Tìm m để hệ bất phương trình có nghiệm \(\left\{{}\begin{matrix}7x-2>=-4x+19\\2x-3m+2< 0\end{matrix}\right.\) có nghiệm
Cho \(a,b,c\ge0\) t/m: \(\left\{{}\begin{matrix}c\left(a+b\right)>0\\\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\le6\end{matrix}\right.\)
Tìm Min: \(H=\left(a+b\right)\sqrt{1+\dfrac{3}{a+b^4}}+\sqrt{c^2+\dfrac{3}{c^2}}+\dfrac{\left(b+6\right)^2}{9\left(a+b+c\right)}\)
\(\left\{{}\begin{matrix}\left(x-1\right)\sqrt{y}+\left(y-1\right)\sqrt{x}=2\sqrt{xy}\\x\sqrt{y-1}+y\sqrt{x}-1=xy\end{matrix}\right.\)
giải kiểu bất đẳng thức ạ . thanks
Giải hệ phương trình: \(\left\{{}\begin{matrix}x+y+z=1\\\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=64\end{matrix}\right.\)
với x, y, z là các số thực dương.
định m để hệ bất phương trình \(\left\{{}\begin{matrix}\dfrac{x-1}{x-2}\le0\\2x+1< m\end{matrix}\right.\)vô nghiệm
Cho \(\left\{\begin{matrix}x\ge0;y\ge0;z\ge0\\x+y+z=1\end{matrix}\right.\)
Chứng minh rằng : \(0\le xy+yz+zx-2xyz\le\frac{7}{27}\)
GIÚP MÌNH NHÉ, MẶC DÙ TẾT NHÉ