Cho x y z a b c > 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tìm GTNN của \(P=\frac{1}{ax+by+cz}+\frac{1}{ay+bz+cx}+\frac{1}{az+bx+cy}\)
Giải HPT sau ( biết a; b ; c là các tham số đôi một khác nhau và a + b + c khác 0 )
\(ax+by+cz=2\left(a+b+c\right)\)
\(bx+cy+az=2\left(a+b+c\right)\)
\(cx+ay+bz=2\left(a+b+c\right)\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) chứng minh rằng với mọi a,b,c dương ta có \(\frac{1}{ax+by+cz}+\frac{1}{bx+cy+az}+\frac{1}{cx+ay+bz}\le\frac{1}{a+b+c}\)
Cho a,b,c,x,y,z>0 . CMR:
\(\frac{x}{ay+bz}+\frac{y}{az+bx}+\frac{z}{ax+by}\ge\frac{3}{a+b}\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
Giải HPT:
`{(ax+by=c),(bx+ay=c),(cx+ay=b):}`
Cho a,b,c là các số đôi một khác nhau và khác 0. Giải hệ: \(\hept{\begin{cases}a^3x+a^2y+az=1\\b^3x+b^2y+bz=1\\c^3x+c^2y+cz=1\end{cases}}\)
Cho hệ phương trình \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}}\) (a;b;c là tham số). Chứng minh rằng điều kiện cần và đủ của hệ phương trình đã cho có nghiệm là: \(a^3+b^3+c^3=3abc\)
cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cx=0 và a+b+b=2007.
Tính :\(P=\frac{ax^2+by^2+cz^2}{bc\left(y-x\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)