Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tuấn Phương

Giải giúp mình bài này với ạ

Akai Haruma
8 tháng 5 2022 lúc 16:42

Lời giải:
ĐKXĐ: $x>0; x\neq 1$

\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)

\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)

b.

$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$

Khi đó:

$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$

c.

$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$

$\Rightarrow 2(x-1)=3\sqrt{x}$

$\Leftrightarrow 2x-3\sqrt{x}-2=0$

$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$

$\Rightarrow x=4$ (tm)

Akai Haruma
8 tháng 5 2022 lúc 16:42

Lời giải:
ĐKXĐ: $x>0; x\neq 1$

\(P=\left[\frac{x}{\sqrt{x}(\sqrt{x}-1)}-\frac{1}{\sqrt{x}(\sqrt{x}-1)}\right]:\left[\frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{2}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)

\(=\frac{x-1}{\sqrt{x}(\sqrt{x}-1)}:\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}:\frac{1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}.(\sqrt{x}-1)=\frac{x-1}{\sqrt{x}}\)

b.

$x=7-4\sqrt{3}=(2-\sqrt{3})^2\Rightarrow \sqrt{x}=2-\sqrt{3}$

Khi đó:

$P=\frac{6-4\sqrt{3}}{2-\sqrt{3}}=-2\sqrt{3}$

c.

$P=\frac{x-1}{\sqrt{x}}=\frac{3}{2}$

$\Rightarrow 2(x-1)=3\sqrt{x}$

$\Leftrightarrow 2x-3\sqrt{x}-2=0$

$\Leftrightarrow (\sqrt{x}-2)(2\sqrt{x}+1)=0$

$\Rightarrow x=4$ (tm)

Akai Haruma đã xóa

Các câu hỏi tương tự
anh kim
Xem chi tiết
Nguyen
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Minh Quang
Xem chi tiết
Ngân Kim
Xem chi tiết
Nguyen
Xem chi tiết
olivouz____ha
Xem chi tiết
Trâm
Xem chi tiết