a.
\(\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\3x^2-5x+2=x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3x^2-6x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b.
ĐKXĐ: \(x\ge\dfrac{4}{3}\)
Phương trình trở thành: \(\left[{}\begin{matrix}\sqrt{3x-4}=0\\x^2-5x+6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=2\\x=3\end{matrix}\right.\) (thỏa mãn)
c.
ĐKXĐ: \(x\ne1\)
\(\dfrac{\left(3x-2\right)\left(x-1\right)}{x-1}-\dfrac{2x}{x-1}=\dfrac{x^2-3}{x-1}\)
\(\Rightarrow3x^2-5x+2-2x=x^2-3\)
\(\Leftrightarrow2x^2-7x+5=0\Rightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=\dfrac{5}{2}\end{matrix}\right.\)