Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Rita

Giải giúp em hết với, mai em cần nộp gấp, cảm ơn ạ!

undefined

 

Akai Haruma
4 tháng 8 2021 lúc 18:29

1a.

$x^2-5x+6=x^2-2x-(3x-6)=x(x-2)-3(x-2)=(x-2)(x-3)$

1b.

$3x^2+9x-30=3(x^2+3x-10)=3(x^2-2x+5x-10)$

$=3[x(x-2)+5(x-2)]=3(x-2)(x+5)$

1c.
$x^2-3x+2=(x^2-x)-(2x-2)=x(x-1)-2(x-1)=(x-1)(x-2)$

1d.

$x^2-9x+18=x^2-3x-(6x-18)=x(x-3)-6(x-3)=(x-3)(x-6)$

1e.

$x^2-6x+8=x^2-2x-(4x-8)=x(x-2)-4(x-2)=(x-2)(x-4)$

Akai Haruma
4 tháng 8 2021 lúc 18:31

1f.
$x^2-5x-14=x^2-7x+2x-14=x(x-7)+2(x-7)=(x+2)(x-7)$

1g.

$x^2+6x+5=(x^2+x)+(5x+5)=x(x+1)+5(x+1)=(x+1)(x+5)$

1h.

$x^2-7x+12=x^2-3x-(4x-12)=x(x-3)-4(x-3)=(x-3)(x-4)$

1i.

$x^2-7x+10=(x^2-2x)-(5x-10)=x(x-2)-5(x-2)=(x-2)(x-5)$

Akai Haruma
4 tháng 8 2021 lúc 18:35

2a.

$3x^2-5x-2=(3x^2-6x)+(x-2)=3x(x-2)+(x-2)$

$=(x-2)(3x+1)$

2b. 

$2x^2+x-6=(2x^2+4x)-(3x+6)=2x(x+2)-3(x+2)$

$=(2x-3)(x+2)$

2c.

$7x^2+50x+7=(7x^2+49x)+(x+7)$

$=7x(x+7)+(x+7)=(7x+1)(x+7)$

2d. 

$12x^2+7x-12=(12x^2-9x)+(16x-12)$

$=3x(4x-3)+4(4x-3)=(4x-3)(3x+4)$

2e.

$15x^2+7x-2=15x^2-3x+10x-2$

$=3x(5x-1)+2(5x-1)=(5x-1)(3x+2)$

Akai Haruma
4 tháng 8 2021 lúc 18:37

2f.

$a^2-5a-14=a^2-7a+2a-14=a(a-7)+2(a-7)$

$=(a-7)(a+2)$

2g.

$2m^2+10m+8=2(m^2+5m+4)$

$=2(m^2+m+4m+4)=2[m(m+1)+4(m+1)]$

$=2(m+1)(m+4)$

2h.

$4p^2-36p+56=4(p^2-9p+14)=4[p^2-2p-(7p-14)]$

$=4[p(p-2)-7(p-2)]=4(p-2)(p-7)$

2i.

$2x^2+5x+2=(2x^2+x)+(4x+2)$

$=x(2x+1)+2(2x+1)=(2x+1)(x+2)$
 

Akai Haruma
4 tháng 8 2021 lúc 21:53

Bài 3:

a. $x^2+4xy-21y^2=x^2+4xy+4y^2-25y^2$
$=(x+2y)^2-(5y)^2=(x+2y-5y)(x+2y+5y)$

$=(x-3y)(x+7y)$

b.

$5x^2+6xy+y^2=9x^2+6xy+y^2-4x^2$

$=(3x+y)^2-(2x)^2=(3x+y-2x)(3x+y+2x)$
$=(x+y)(5x+y)$

c.

$x^2+2xy-15y^2=x^2+2xy+y^2-16y^2$

$=(x+y)^2-(4y)^2=(x+y-4y)(x+y+4y)$

$=(x-3y)(x+5y)$

d.

$(x-y)^2+4(x-y)-12=(x-y)^2+4(x-y)+4-16$

$=(x-y+2)^2-4^2=(x-y+2-4)(x-y+2+4)$

$=(x-y-2)(x-y+6)$

e. 

$x^2-7xy+10y^2$

$=x^2-2xy-(5xy-10y^2)$

$=x(x-2y)-5y(x-2y)=(x-2y)(x-5y)$

f. 

$x^2yz+5xyz-14yz=yz(x^2+5x-14)$

$=yz(x^2-2x+7x-14)$

$=yz[x(x-2)+7(x-2)]=yz(x-2)(x+7)$

Akai Haruma
4 tháng 8 2021 lúc 21:55

4a.

$a^4+a^2+1=(a^4+2a^2+1)-a^2$

$=(a^2+1)^2-a^2=(a^2+1-a)(a^2+1+a)$
4b. 

$a^4+a^2-2=(a^4-1)+(a^2-1)=(a^2-1)(a^2+1)+(a^2-1)$

$=(a^2-1)(a^2+2)=(a-1)(a+1)(a^2+2)$

4c. 

$x^4+4x^2-5=(x^4+4x^2+4)-9=(x^2+2)^2-3^2$

$=(x^2+2-3)(x^2+2+3)=(x^2-1)(x^2+5)$

$=(x-1)(x+1)(x^2+5)$

Akai Haruma
4 tháng 8 2021 lúc 21:59

4d. 

$x^3-19x-30=x^3+2x^2-(2x^2+4x)-(15x+30)$

$=x^2(x+2)-2x(x+2)-15(x+2)=(x+2)(x^2-2x-15)$

$=(x+2)[x^2+3x-(5x+15)]$

$=(x+2)[x(x+3)-5(x+3)]=(x+2)(x+3)(x-5)$

4e.

$x^3-7x-6=(x^3+1)-(7x+7)=(x+1)(x^2-x+1)-7(x+1)$

$=(x+1)(x^2-x+1-7)=(x+1)(x^2-x-6)$

$=(x+1)[x^2+2x-(3x+6)]$
$=(x+1)[x(x+2)-3(x+2)]=(x+1)(x+2)(x-3)$

4f.

$x^3-5x^2-14x=x(x^2-5x-14)=x[x^2+2x-(7x+14)]$

$=x[x(x+2)-7(x+2)]=x(x+2)(x-7)$

Akai Haruma
4 tháng 8 2021 lúc 22:06

5a. $x^4+4=(x^2)^2+2^2+2.x^2.2-4x^2$

$=(x^2+2)^2-(2x)^2=(x^2+2-2x)(x^2+2+2x)$

5b. $x^4+64=(x^2)^2+8^2+2.x^2.8-16x^2$

$=(x^2+8)^2-(4x)^2=(x^2+8-4x)(x^2+8+4x)$

5c. $x^8+x^7+1=(x^8-x^2)+(x^7-x)+(x^2+x+1)$

$=x^2(x^6-1)+x(x^6-1)+(x^2+x+1)$

$=(x^6-1)(x^2+x)+(x^2+x+1)$

$=(x^3-1)(x^3+1)(x^2+x)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^3+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^3+1)(x^2+x)+1]$

$=(x^2+x+1)(x^6-x^4+x^3-x+1)$

5d. $x^8+x^4+1=(x^8+x^7+1)-(x^7-x^4)$

$=(x^2+x+1)(x^6-x^4+x^3-x+1)-x^4(x^3-1)$

$=(x^2+x+1)(x^6-x^4+x^3-x+1)-x^4(x-1)(x^2+x+1)$

$=(x^2+x+1)(x^6-x^4+x^3-x+1-x^5+x^4)$

$=(x^2+x+1)(x^6-x^5+x^3-x+1)$

$=(x^2+x+1)[x^4(x^2-x+1)-(x^4-x^3+x^2)+(x^2-x+1)]$

$=(x^2+x+1)[x^4(x^2-x+1)-x^2(x^2-x+1)+(x^2-x+1)]$

$=(x^2+x+1)(x^2-x+1)(x^4-x^2+1)$

5e. $x^5+x+1=(x^5-x^2)+(x^2+x+1)$

$=x^2(x^3-1)+(x^2+x+1)=x^2(x-1)(x^2+x+1)+(x^2+x+1)$

$=(x^2+x+1)[x^2(x-1)+1]$

$=(x^2+x+1)(x^3-x^2+1)$

 

Akai Haruma
4 tháng 8 2021 lúc 22:10

5f.

$x^3+x^2+4=(x^2+2x^2)-(x^2-4)$

$=x^2(x+2)-(x-2)(x+2)=(x+2)[x^2-(x-2)]=(x+2)(x^2-x+2)$

5g.

$x^4+2x^2-24=(x^4+2x^2+1)-25$

$=(x^2+1)^2-5^2=(x^2+1-5)(x^2+1+5)$

$=(x^2-4)(x^2+6)=(x-2)(x+2)(x^2+6)$

5h.

$x^3-2x-4=(x^3-2x^2)+(2x^2-4x)+(2x-4)$

$=x^2(x-2)+2x(x-2)+2(x-2)=(x-2)(x^2+2x+2)$

5i.

$a^4+4b^4=(a^2)^2+(2b^2)^2+2.a^2.2b^2-4a^2b^2$

$=(a^2+2b^2)^2-(2ab)^2=(a^2+2b^2-2ab)(a^2+2b^2+2ab)$

Akai Haruma
4 tháng 8 2021 lúc 22:14

6a.

Đặt $x^2+x=a$ thì:

$(x^2+x)^2-14(x^2+x)+24$

$=a^2-14a+24=a^2-2a-(12a-24)$

$=a(a-2)-12(a-2)=(a-12)(a-2)=(x^2+x-12)(x^2+x-2)$

$=(x^2-3x+4x-12)(x^2-x+2x-2)$

$=[x(x-3)+4(x-3)][x(x-1)+2(x-1)]=(x-3)(x+4)(x-1)(x+2)$

6b. Đặt $x^2+x=a$ thì:

$(x^2+x)^2+4x^2+4x-12$

$=(x^2+x)^2+4(x^2+x)-12$

$=a^2+4a-12=(a^2-2a)+(6a-12)$

$=a(a-2)+6(a-2)=(a+6)(a-2)=(x^2+x+6)(x^2+x-2)$

$=(x^2+x+6)(x^2-x+2x-2)$

$=(x^2+x+6)[x(x-1)+2(x-1)]=(x^2+x+6)(x-1)(x+2)$

6c.

$x^4+2x^3+5x^2+4x-12$

$=(x^4+2x^3+x^2)+4(x^2+x)-12$
$=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x+6)(x-1)(x+2)$ (giống phần b)

Akai Haruma
4 tháng 8 2021 lúc 22:18

6d.

$(x+1)(x+2)(x+3)(x+4)+1$

$=(x+1)(x+4)(x+2)(x+3)+1$

$=(x^2+5x+4)(x^2+5x+6)+1$

$=a(a+2)+1$ (đặt $x^2+5x+4=a$)

$=a^2+2a+1$

$=(a+1)^2=(x^2+5x+5)^2$

6e.

$(x+1)(x+3)(x+5)(x+7)+15$

$=(x+1)(x+7)(x+3)(x+5)+15$

$=(x^2+8x+7)(x^2+8x+15)+15$

$=a(a+8)+15$ (đặt $x^2+8x+7=a$)

$=a^2+8a+15=a^2+3a+5a+15$

$=a(a+3)+5(a+3)=(a+3)(a+5)=(x^2+8x+10)(x^2+8x+12)$

$=(x^2+8x+10)(x^2+2x+6x+12)$

$=(x^2+8x+10)[x(x+2)+6(x+2)]$

$=(x^2+8x+10)(x+2)(x+6)$

6f.

$(x+1)(x+2)(x+3)(x+4)-24$

$=(x+1)(x+4)(x+2)(x+3)-24$

$=(x^2+5x+4)(x^2+5x+6)-24$

$=a(a+2)-24$ (đặt $x^2+5x+4=a$)

$=a^2+2a-24=a^2-4a+6a-24$

$=a(a-4)+6(a-4)=(a-4)(a+6)$

$=(x^2+5x)(x^2+5x+10)=x(x+5)(x^2+5x+10)$

Akai Haruma
4 tháng 8 2021 lúc 23:04

7a.

Đặt $x^2+4x+8=a$ thì:

$(x^2+4x+8)^2+3x(x^2+4x+8)+2x^2$

$=a^2+3ax+2x^2=(a^2+ax)+(2ax+2x^2)$

$=a(a+x)+2x(a+x)=(a+2x)(a+x)$

$=(x^2+6x+8)(x^2+5x+8)$

$=(x^2+2x+4x+8)(x^2+5x+8)$

$=[x(x+2)+4(x+2)](x^2+5x+8)=(x+4)(x+2)(x^2+5x+8)$

7b. Đặt $x^2+x+1=a$ thì:

$(x^2+x+1)(x^2+x+2)-12$

$=a(a+1)-12=a^2+a-12$

$=(a^2-3a)+(4a-12)=a(a-3)+4(a-3)$

$=(a+4)(a-3)=(x^2+x+5)(x^2+x-2)$

$=(x^2+x+5)[(x^2-x)+(2x-2)]$

$=(x^2+x+5)[x(x-1)+2(x-1)]=(x^2+x+5)(x+2)(x-1)$

Akai Haruma
4 tháng 8 2021 lúc 23:07

7c.

Đặt $x^2+8x+7=a$ thì:

$(x^2+8x+7)(x^2+8x+15)+15$

$=a(a+8)+15$

$=a^2+8a+15=a^2+3a+5a+15$

$=a(a+3)+5(a+3)=(a+5)(a+3)$

$=(x^2+8x+12)(x^2+8x+10)$

$=(x^2+2x+6x+12)(x^2+8x+10)$
$=[x(x+2)+6(x+2)](x^2+8x+10)=(x+2)(x+6)(x^2+8x+10)$

7d.

$(x+2)(x+3)(x+4)(x+5)-24$

$=(x+2)(x+5)(x+3)(x+4)-24$

$=(x^2+7x+10)(x^2+7x+12)-24$

$=a(a+2)-24$ (đặt $x^2+7x+10=a$)

$=a^2+2a-24$

$=a^2-4a+6a-24=a(a-4)+6(a-4)$
$=(a-4)(a+6)=(x^2+7x+6)(x^2+7x+16)$

$=[(x^2+x)+(6x+6)](x^2+7x+16)$

$=[x(x+1)+6(x+1)](x^2+7x+16)$

$=(x+1)(x+6)(x^2+7x+16)$

Akai Haruma
4 tháng 8 2021 lúc 23:12

8a.

$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz$

$=(x^2y+xy^2+xyz)+(x^2z+xz^2+xyz)+(y^2z+yz^2)$

$=xy(x+y+z)+xz(x+z+y)+yz(y+z)$

$=(x+y+z)(xy+xz)+yz(y+z)=x(x+y+z)(y+z)+yz(y+z)$

$=(y+z)[x(x+y+z)+yz]=(y+z)[x(x+y)+z(x+y)]$

$=(y+z)(x+y)(x+z)$

8b.

$x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+3xyz$

$=(x^2y+xy^2+xyz)+(x^2z+xz^2+xyz)+(y^2z+yz^2+xyz)$

$=xy(x+y+z)+xz(x+y+z)+yz(x+y+z)$

$=(x+y+z)(xy+xz+yz)$

8c.

$x(y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)$

$=x(y^2-z^2)-y[(y^2-z^2)+(x^2-y^2)]+z(x^2-y^2)$

$=(y^2-z^2)(x-y)-(y-z)(x^2-y^2)$

$=(y-z)(y+z)(x-y)-(y-z)(x-y)(x+y)$

$=(y-z)(x-y)(y+z-x-y)=(y-z)(x-y)(z-x)$

Akai Haruma
4 tháng 8 2021 lúc 23:19

8d.

$xy(x-y)-xz(x+z)+yz(2x-y+z)$

$=xy(x-y)-xz(x+z)+yz[(x-y)+(x+z)]$

$=xy(x-y)-xz(x+z)+yz(x-y)+yz(x+z)$

$=(x-y)(xy+yz)+(x+z)(yz-xz)$

$=y(x-y)(x+z)-z(x+z)(x-y)$

$=(x-y)(x+z)(y-z)$

8e.

$x(y+z)^2+y(z+x)^2+z(x+y)^2-4xyz$

$=xy^2+xz^2+yz^2+yx^2+zx^2+zy^2+2xyz$

$=xy(x+y+z)+xz(x+y+z)+yz(y+z)$

$=(x+y+z)(xy+xz)+yz(y+z)$

$=x(x+y+z)(y+z)+yz(y+z)=(y+z)(x^2+xy+xz+yz)$

$=(y+z)[x(x+y)+z(x+y)]=(y+z)(x+y)(x+z)$

8f.

$yz(y+z)+xz(z-x)-xy(x+y)$

$=yz(y+z)+xz(z-x)-xy[(y+z)-(z-x)]$

$=yz(y+z)+xz(z-x)-xy(y+z)+xy(z-x)$

$=(y+z)(yz-xy)+(z-x)(xz+xy)$

$=(y+z)y(z-x)+(z-x)x(z+y)$

$=(y+z)(z-x)(y+x)$

Akai Haruma
4 tháng 8 2021 lúc 23:24

Bài 9: 

Ta thấy:

$B=x^3+6x^2-19x-24=(x^3-x)+6x^2-18x-24$

$=x(x^2-1)+6(x^2-3x-4)$

$=x(x-1)(x+1)+6(x^2-3x-4)$
Vì $x(x-1)$ là tích 2 số nguyên liên tiếp nên $x(x-1)\vdots 2$

$\Rightarrow x(x-1)(x+1)\vdots 2$

Mặt khác: $x(x-1)(x+1)$ là tích 3 số nguyên liên tiếp nên $x(x-1)(x+1)\vdots 3$

Mà $(2,3)=1$ nên $x(x-1)(x+1)\vdots 6$

$\Rightarrow B=x(x-1)(x+1)+6(x^2-3x-4)\vdots 6$

Ta có đpcm.

Akai Haruma
4 tháng 8 2021 lúc 23:26

Bài 10:

$y^2+2(x^2+1)=2y(x+1)$

$\Leftrightarrow y^2+2x^2+2-2xy-2y=0$

$\Leftrightarrow (y^2+x^2-2xy)+2(x-y)+1+x^2-2x+1=0$

$\Leftrightarrow (x-y)^2+2(x-y)+1+(x^2-2x+1)=0$

$\Leftrightarrow (x-y+1)^2+(x-1)^2=0$

$\Rightarrow (x-y+1)^2=(x-1)^2=0$

$\Leftrightarrow x=1; y=2$

Akai Haruma
4 tháng 8 2021 lúc 23:34

Bài 11:
$3x^2-2y^2-5xy+x-2y-7=0$

$\Leftrightarrow 3x^2+x(1-5y)-(2y^2+2y+7)=0$

Coi đây là pt bậc 2 ẩn $x$

$\Delta=(1-5y)^2+12(2y^2+2y+7)=49y^2+14y+85$

$=(7y+1)^2+84$

Để pt có nghiệm nguyên thì:

$(7y+1)^2+84=t^2$ với $t$ là số tự nhiên 

$\Leftrightarrow 84=(t-7y-1)(t+7y+1)$

Vì $t-7y-1, t+7y+1$ cùng tính chẵn lẻ nên ta xét các TH sau:

$t+7y+1=2; t-7y-1=42$

$t+7y+1=-2; t-7y-1=-42$

$t+7y+1=42; t-7y-1=2$

$t+7y+1=-42; t-7y-1=-2$

$t+7y+1=6; t-7y-1=14$

$t+7y+1=-6; t-7y-1=-14$

$t+7y+1=-14; t-7y-1=-6$

$t+7y+1=14; t-7y-1=6$

Đến đây thì đơn giản rồi.

 


Các câu hỏi tương tự
Phương Thảo
Xem chi tiết
Phong Miên
Xem chi tiết
Hoàng Ngọc Diệp Chi
Xem chi tiết
Phương Anh
Xem chi tiết
Hoàng Ngọc Diệp Chi
Xem chi tiết
Hoàng Như Anh
Xem chi tiết
Kim Tuyết Hà
Xem chi tiết
Nguyễn Rita
Xem chi tiết
Nguyễn Rita
Xem chi tiết